Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Biomech ; 167: 112077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599020

RESUMEN

Low back pain is commonly reported in occupational settings due to factors such as heavy lifting and poor ergonomic practices, often resulting in significant healthcare expenses and lowered productivity. Assessment tools for human motion and ergonomic risk at the workplace are still limited. Therefore, this study aimed to assess lower back muscle and joint reaction forces in laboratory conditions using wearable inertial measurement units (IMUs) during weight lifting, a frequently high-risk workplace task. Ten able-bodied participants were instructed to lift a 28 lbs. box while surface electromyography sensors, IMUs, and a camera-based motion capture system recorded their muscle activity and body motion. The data recorded by IMUs and motion capture system were used to estimate lower back muscle and joint reaction forces via musculoskeletal modeling. Lower back muscle patterns matched well with electromyography recordings. The normalized mean absolute differences between muscle forces estimated based on measurements of IMUs and cameras were less than 25 %, and the statistical parametric mapping results indicated no significant difference between the forces estimated by both systems. However, abrupt changes in motion, such as lifting initiation, led to significant differences (p < 0.05) between the muscle forces. Furthermore, the maximum L5-S1 joint reaction force estimated using IMU data was significantly lower (p < 0.05) than those estimated by cameras during weight lifting and lowering. The study showed how kinematic errors from IMUs propagated through the musculoskeletal model and affected the estimations of muscle forces and joint reaction forces. Our findings showed the potential of IMUs for in-field ergonomic risk evaluations.


Asunto(s)
Músculos de la Espalda , Dolor de la Región Lumbar , Dispositivos Electrónicos Vestibles , Humanos , Elevación , Músculos/fisiología , Electromiografía , Fenómenos Biomecánicos
2.
Respir Care ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503467

RESUMEN

BACKGROUND: Patients with COPD and other lung diseases are treated with long-term oxygen therapy (LTOT). Portable oxygen sources are required to administer LTOT while maintaining patient autonomy. Existing portable oxygen equipment has limitations that can hinder patient mobility. A novel nasal interface is presented in this study, aiming to enhance breath detection and triggering efficiency of portable pulsed-flow oxygen devices, thereby improving patient mobility and independence. METHOD: To examine the effectiveness of the new interface, 8 respiratory therapists participated in trials using different oxygen sources (tank with oxygen-conserving device, SimplyGo Mini portable oxygen concentrator [POC], and OxyGo NEXT POC) and breathing types (nasal and oral) while using either the new nasal interface or a standard cannula. Each trial was video recorded so participant breaths could be retroactively matched with a pulse/no-pulse response, and triggering success rates were calculated by dividing the number of oxygen pulses by the number of breaths in each trial. After each trial, volunteers were asked to rate their perceived breathing resistance. RESULTS: Nasal breathing consistently resulted in higher triggering success rates compared to oral breathing for pulsed-flow oxygen devices. POCs exhibited higher triggering success rates than did the oxygen tanks with conserving device. However, there were no significant differences in triggering success rates between the two POC models. The new nasal interface demonstrated improved triggering success rates compared to the standard cannula. Whereas the new nasal interface was associated with a slight increase in perceived breathing resistance during nasal breathing trials, participants reported manageable resistance levels when using the interface. CONCLUSIONS: This study demonstrates that the new nasal interface can improve triggering success rates of pulsed-flow oxygen devices during both nasal and oral breathing scenarios. Further research involving patient trials is recommended to understand the clinical implications of improved pulse triggering.

3.
Respir Care ; 69(4): 438-448, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38443141

RESUMEN

BACKGROUND: The nasal cannula is widely regarded as a safe and effective means of administering low- and high-flow oxygen to patients irrespective of their age. However, variability in delivered oxygen concentration (FDO2 FDO2 ) via nasal cannula has the potential to pose health risks. The present study aimed to evaluate predictive equations for FDO2 over a large parameter space, including variation in breathing, oxygen flow, and upper-airway geometry representative of both young children and adults. METHODS: Realistic nasal airway geometries were previously collected from medical scans of adults, infants, and neonates. Nasal airway replicas based on these geometries were used to measure the FDO2 for low-flow oxygen delivery during simulated spontaneous breathing. The present study extends previously published data sets to include higher oxygen flows. The extended data sets included nasal cannula oxygen flows that ranged from 6 to 65 L/min for the adult replicas, and from 0.5 to 6 L/min for the infant replicas. For both age groups, FDO2 was measured over a range of breathing frequencies, inspiratory to expiratory time ratios, and tidal volumes. Measured FDO2 values were compared with values predicted by using a previously derived flow-weighted equation. RESULTS: For both age groups, FDO2 was observed to increase nonlinearly with the ratio between oxygen flow supplied to the nasal cannula and the average inhalation flow. The previously derived flow-weighted equation over-predicted FDO2 at higher oxygen flows. A new empirical equation, therefore, was proposed to predict FDO2 for either age group as a function of nasal cannula flow, tidal volume, and inspiratory time. Predicted FDO2 values matched measured values, with average relative errors of 2.4% for infants and 4.3% for adults. CONCLUSIONS: A new predictive equation for FDO2 was obtained that accurately matched measured data in both adult and infant airway replicas for low- and high-flow regimens.


Asunto(s)
Cánula , Respiración , Recién Nacido , Adulto , Lactante , Niño , Humanos , Preescolar , Nariz , Oxígeno , Intubación , Terapia por Inhalación de Oxígeno
4.
Biomed Eng Online ; 23(1): 2, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167089

RESUMEN

BACKGROUND: Balance parameters derived from wearable sensor measurements during postural sway have been shown to be sensitive to experimental variables such as test duration, sensor number, and sensor location that influence the magnitude and frequency-related properties of measured center-of-mass (COM) and center-of-pressure (COP) excursions. In this study, we investigated the effects of test duration, the number of sensors, and sensor location on the reliability of standing balance parameters derived using body-mounted accelerometers. METHODS: Twelve volunteers without any prior history of balance disorders were enrolled in the study. They were asked to perform two 2-min quiet standing tests with two different testing conditions (eyes open and eyes closed). Five inertial measurement units (IMUs) were employed to capture postural sway data from each participant. IMUs were attached to the participants' right legs, the second sacral vertebra, sternum, and the left mastoid processes. Balance parameters of interest were calculated for the single head, sternum, and sacrum accelerometers, as well as, a three-sensor combination (leg, sacrum, and sternum). Accelerometer data were used to estimate COP-based and COM-based balance parameters during quiet standing. To examine the effect of test duration and sensor location, each 120-s recording from different sensor locations was segmented into 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, and 110-s intervals. For each of these time intervals, time- and frequency-domain balance parameters were calculated for all sensor locations. RESULTS: Most COM-based and COP-based balance parameters could be derived reliably for clinical applications (Intraclass-Correlation Coefficient, ICC ≥ 0.90) with a minimum test duration of 70 and 110 s, respectively. The exceptions were COP-based parameters obtained using a sacrum-mounted sensor, especially in the eyes-closed condition, which could not be reliably used for clinical applications even with a 120-s test duration. CONCLUSIONS: Most standing balance parameters can be reliably measured using a single head- or sternum-mounted sensor within a 120-s test duration. For other sensor locations, the minimum test duration may be longer and may depend on the specific test conditions.


Asunto(s)
Pierna , Equilibrio Postural , Humanos , Reproducibilidad de los Resultados , Posición de Pie , Acelerometría
5.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139516

RESUMEN

Muscle fatigue has proven to be a main factor in developing work-related musculoskeletal disorders. Taking small breaks or performing stretching routines during a work shift might reduce workers' fatigue. Therefore, our objective was to explore how breaks and/or a stretching routine during a work shift could impact muscle fatigue and body kinematics that might subsequently impact the risk of work-related musculoskeletal disorder (WMSD) risk during material handling jobs. We investigated muscle fatigue during a repetitive task performed without breaks, with breaks, and with a stretching routine during breaks. Muscle fatigue was detected using muscle activity (electromyography) and a validated kinematic score measured by wearable sensors. We observed a significant reduction in muscle fatigue between the different work-rest schedules (p < 0.01). Also, no significant difference was observed between the productivity of the three schedules. Based on these objective kinematic assessments, we concluded that taking small breaks during a work shift can significantly reduce muscle fatigue and potentially reduce its consequent risk of work-related musculoskeletal disorders without negatively affecting productivity.


Asunto(s)
Fatiga Muscular , Enfermedades Musculoesqueléticas , Humanos , Fatiga Muscular/fisiología , Electromiografía , Descanso
6.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960580

RESUMEN

Maintaining a stable upright posture is essential for performing activities of daily living, and impaired standing balance may impact an individual's quality of life. Therefore, accurate and sensitive methods for assessing static balance are crucial for identifying balance impairments, understanding the underlying mechanisms of the balance deficiencies, and developing targeted interventions to improve standing balance and prevent falls. This review paper first explores the methods to quantify standing balance. Then, it reviews traditional posturography and recent advancements in using wearable inertial measurement units (IMUs) to assess static balance in two populations: older adults and those with incomplete spinal cord injury (iSCI). The inclusion of these two groups is supported by their large representation among individuals with balance impairments. Also, each group exhibits distinct aspects in balance assessment due to diverse underlying causes associated with aging and neurological impairment. Given the high vulnerability of both demographics to balance impairments and falls, the significance of targeted interventions to improve standing balance and mitigate fall risk becomes apparent. Overall, this review highlights the importance of static balance assessment and the potential of emerging methods and technologies to improve our understanding of postural control in different populations.


Asunto(s)
Actividades Cotidianas , Traumatismos de la Médula Espinal , Humanos , Anciano , Calidad de Vida , Modalidades de Fisioterapia , Envejecimiento , Equilibrio Postural
7.
Orthop J Sports Med ; 11(8): 23259671231191134, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37655252

RESUMEN

Background: Current sports medicine and rehabilitation trends indicate an increasing use of wearable technology. The ability of these devices to collect, transmit, and process physiological, biomechanical, bioenergy, and environmental data may aid in anterior cruciate ligament reconstruction (ACLR) workload monitoring and return-to-sport decision-making. In addition, their ease of use allows assessments to occur outside the clinical or laboratory settings and across a broader timeline. Purpose: To (1) determine how wearable technology can assess external workload deficits between limbs (involved and uninvolved) and between groups (healthy controls vs patients with ACLR) during physical activity (PA) or sport and (2) describe the types of sensors, sensor specifications, assessment protocols, outcomes of interest, and participant characteristics from the included studies. Study Design: Scoping review; Level of evidence, 4. Methods: In February 2023, a systematic search was performed in the MEDLINE, EMBASE, CINAHL, SPORTDiscus, Scopus, IEEE Xplore, Compendex, and ProQuest Dissertations and Theses Global databases. Eligible studies included assessments of PA or sports workloads via wearable technology after ACLR. Results: Twenty articles met eligibility criteria and were included. The primary activity assessed was activities of daily living, although rehabilitation, training, and competition were also represented. Accelerometers, global positioning system units, pedometers, and pressure sensor insoles were worn to collect external workload data, which was quantified as kinetic, kinematic, and temporospatial data. Daily steps (count) and moderate to vigorous PA (min/day or week) were the most common units of measurement. A limited number of studies included outcomes related to between-limb asymmetries. Conclusion: The findings of this scoping review highlight the versatility of wearable technologies to collect patients' kinetic, kinematic, and temporospatial data and assess external workload outcomes after ACLR. In addition, some wearable technologies identified deficits in workload compared with healthy controls and between reconstructed and unaffected limbs.

8.
Int J Comput Assist Radiol Surg ; 18(12): 2191-2202, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37597089

RESUMEN

PURPOSE: Surgical skill assessment has primarily been performed using checklists or rating scales, which are prone to bias and subjectivity. To tackle this shortcoming, assessment of surgical tool motion can be implemented to objectively classify skill levels. Due to the challenges involved in motion tracking of surgical tooltips in minimally invasive surgeries, formerly used assessment approaches may not be feasible for real-world skill assessment. We proposed an assessment approach based on the virtual marker on surgical tooltips to derive the tooltip's 3D position and introduced a novel metric for surgical skill assessment. METHODS: We obtained the 3D tooltip position based on markers placed on the tool handle. Then, we derived tooltip motion metrics to identify the metrics differentiating the skill levels for objective surgical skill assessment. We proposed a new tooltip motion metric, i.e., motion inconsistency, that can assess the skill level, and also can evaluate the stage of skill learning. In this study, peg transfer, dual transfer, and rubber band translocation tasks were included, and nine novices, five surgical residents and five attending general surgeons participated. RESULTS: Our analyses showed that tooltip path length (p [Formula: see text] 0.007) and path length along the instrument axis (p [Formula: see text] 0.014) differed across the three skill levels in all the tasks and decreased by skill level. Tooltip motion inconsistency showed significant differences among the three skill levels in the dual transfer (p [Formula: see text] 0.025) and the rubber band translocation tasks (p [Formula: see text] 0.021). Lastly, bimanual dexterity differed across the three skill levels in all the tasks (p [Formula: see text] 0.012) and increased by skill level. CONCLUSION: Depth perception ability (indicated by shorter tooltip path lengths along the instrument axis), bimanual dexterity, tooltip motion consistency, and economical tooltip movements (shorter tooltip path lengths) are related to surgical skill. Our findings can contribute to objective surgical skill assessment, reducing subjectivity, bias, and associated costs.


Asunto(s)
Laparoscopía , Cirujanos , Humanos , Competencia Clínica , Movimiento (Física) , Movimiento , Procedimientos Quirúrgicos Mínimamente Invasivos
9.
Appl Ergon ; 113: 104103, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37499526

RESUMEN

Work-related Musculoskeletal Disorders (WMSDs) account for a significant portion of worker illnesses and injuries, resulting in high costs and productivity losses to employers globally. In recent years, there has been an increased interest in the use of exoskeleton technology to reduce rates of WMSDs in industrial worksites. Despite the potential of exoskeletons to mitigate the risks of WMSDs, the required steps to properly assess and implement the technology for industrial applications are not clear. This paper proposes a framework that can help organizations successfully evaluate and adopt industrial exoskeletons. Through a focus group of industry professionals, researchers, and exoskeleton experts, and by building on existing literature, an overarching adoption framework is developed. The identified stages and tasks within the framework enable an organization to evaluate and adopt exoskeletons through a systematic approach and to identify the existing gaps in their technology adoption process. The findings also highlight the areas where further studies are needed to promote the adoption of industrial exoskeletons, including large-scale field studies and long-term monitoring.


Asunto(s)
Dispositivo Exoesqueleto , Enfermedades Musculoesqueléticas , Humanos , Industrias , Enfermedades Musculoesqueléticas/etiología , Enfermedades Musculoesqueléticas/prevención & control , Tecnología
10.
Sensors (Basel) ; 23(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37299726

RESUMEN

Surface electromyography (sEMG) is generally used to measure muscles' activity. The sEMG signal can be affected using several factors and vary among individuals and even measurement trials. Thus, to consistently evaluate data among individuals and trials, the maximum voluntary contraction (MVC) value is usually calculated and used to normalize sEMG signals. However, the sEMG amplitude collected from low back muscles can be frequently larger than that found when conventional MVC measurement procedures are used. To address this limitation, in this study, we proposed a new dynamic MVC measurement procedure for low back muscles. Inspired by weightlifting, we designed a detailed dynamic MVC procedure, and then collected data from 10 able-bodied participants and compared their performances using several conventional MVC procedures by normalizing the sEMG amplitude for the same test. The sEMG amplitude normalized by our dynamic MVC procedure showed a much lower value than those obtained using other procedures (Wilcoxon signed-rank test, with p < 0.05), indicating that the sEMG collected during dynamic MVC procedure had a larger amplitude than those of conventional MVC procedures. Therefore, our proposed dynamic MVC obtained sEMG amplitudes closer to its physiological maximum value and is thus more capable of normalizing the sEMG amplitude for low back muscles.


Asunto(s)
Músculos de la Espalda , Humanos , Electromiografía/métodos , Ejercicio Físico , Músculo Esquelético/fisiología , Contracción Muscular/fisiología
11.
J Neural Eng ; 20(2)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36930976

RESUMEN

Objective.Characterizing the task goals of the neural control system for achieving seated stability has been a fundamental challenge in human motor control research. This study aimed to experimentally identify the task goals of the neural control system for seated stability.Approach.Ten able-bodied young individuals participated in our experiments, which allowed us to measure their body motion and muscle activity during perturbed sitting. We used a nonlinear neuromechanical model of the seated human, along with a full-state feedback linearization approach and optimal control theory for identifying the neural control system and characterizing its task goals.Main results.We demonstrated that the neural feedback for trunk stability during seated posture uses angular position, velocity, acceleration, and jerk in a linearized space. The mean squared error between the predicted and measured motor commands was less than 0.6% among all trials and participants, with a median correlation coefficientrof more than 0.9. Our identified optimal neural control primarily used trunk angular acceleration and near-minimum muscle activation to achieve seated stability while keeping the deviations of the trunk angular position and acceleration sufficiently small.Significance.Our proposed approach to neural control system identification relied on a performance criterion (e.g. cost function) explaining what the functional goal is and subsequently, finds the control law that leads to the best performance. Therefore, instead of assuming what control schemes the neural control might utilize (e.g. proportional-integral-derivative control), optimal control allows the motor task and the neuromechanical model to dictate a control law that best describes the physiological process. This approach allows for a mechanistic understanding of the neuromuscular mechanisms involved in seated stability and for inferring the task goals used by the neural control system to achieve the targeted motor behavior. Such neural control characterization can contribute to the development of objective balance evaluation tools and of bio-inspired assistive neuromodulation technologies.


Asunto(s)
Objetivos , Sedestación , Humanos , Retroalimentación , Postura/fisiología , Sistema Nervioso Central
12.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36991855

RESUMEN

The smooth movement of hand/surgical instruments is considered an indicator of skilled, coordinated surgical performance. Jerky surgical instrument movements or hand tremors can cause unwanted damages to the surgical site. Different methods have been used in previous studies for assessing motion smoothness, causing conflicting results regarding the comparison among surgical skill levels. We recruited four attending surgeons, five surgical residents, and nine novices. The participants conducted three simulated laparoscopic tasks, including peg transfer, bimanual peg transfer, and rubber band translocation. Tooltip motion smoothness was computed using the mean tooltip motion jerk, logarithmic dimensionless tooltip motion jerk, and 95% tooltip motion frequency (originally proposed in this study) to evaluate their capability of surgical skill level differentiation. The results revealed that logarithmic dimensionless motion jerk and 95% motion frequency were capable of distinguishing skill levels, indicated by smoother tooltip movements observed in high compared to low skill levels. Contrarily, mean motion jerk was not able to distinguish the skill levels. Additionally, 95% motion frequency was less affected by the measurement noise since it did not require the calculation of motion jerk, and 95% motion frequency and logarithmic dimensionless motion jerk yielded a better motion smoothness assessment outcome in distinguishing skill levels than mean motion jerk.


Asunto(s)
Laparoscopía , Cirujanos , Humanos , Movimiento (Física) , Movimiento , Instrumentos Quirúrgicos , Mano
14.
PLoS One ; 18(2): e0281778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36800355

RESUMEN

One of the main factors in controlling infectious diseases such as COVID-19 is to prevent touching preoral and prenasal regions. Face touching is a habitual behaviour that occurs frequently. Studies showed that people touch their faces 23 times per hour on average. A contaminated hand could transmit the infection to the body by a facial touch. Since controlling this spontaneous habit is not easy, this study aimed to develop and validate a technology to detect and monitor face touch using dynamic time warping (DTW) and KNN (k-nearest neighbours) based on a wrist-mounted inertial measurement unit (IMU) in a controlled environment and natural environment trials. For this purpose, eleven volunteers were recruited and their hand motions were recorded in controlled and natural environment trials using a wrist-mounted IMU. Then the sensitivity, precision, and accuracy of our developed technology in detecting the face touch were evaluated. It was observed that the sensitivity, precision, and accuracy of the DTW-KNN classifier were 91%, 97%, and 85% in controlled environment trials and 79%, 92%, and 79% in natural environment trials (daily life). In conclusion, a wrist-mounted IMU, widely available in smartwatches, could detect the face touch with high sensitivity, precision, and accuracy and can be used as an ambulatory system to detect and monitor face touching as a high-risk habit in daily life.


Asunto(s)
COVID-19 , Percepción del Tacto , Humanos , Tacto , COVID-19/prevención & control , Mano , Muñeca
15.
Sports Biomech ; : 1-17, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36760079

RESUMEN

Strengthening the toe flexors and ankle plantar flexors may improve vertical jump performance. One exercise that may be effective for concurrently strengthening these muscles is heel-raises performed on an incline. The purpose of this study was to investigate the effects of incline versus conventional (block) heel-raise exercise on hallux and II-V digit flexor strength, vertical jump performance, and ankle plantar flexor strength. Thirty-three female volleyball players were randomly allocated to perform incline (n = 17) or block (n = 16) heel-raise exercise for 11-weeks. Participants' toe flexor strength, countermovement jump, approach jump, and ankle plantar flexor strength were assessed before, after 7 weeks, and after 11 weeks of exercise. There were no significant time-by-group interactions for any variable (p > 0.05). However, both groups improved their hallux flexor strength (Δ0.27 ± 0.50 N·kg-1; p < 0.05), and vertical countermovement (Δ1.2 ± 2.3 cm; p < 0.05) and approach (Δ1.9 ± 2.6 cm; p < 0.05) jump height from pre- to post-test. No changes were observed in the ankle plantar flexor or II-V digit flexor strength (n > 0.05). Both incline and conventional heel-raises improve toe flexor strength. Practitioners seeking to improve individuals' foot function may consider incorporating incline or block heel-raises.

16.
Respir Res ; 23(1): 333, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482438

RESUMEN

BACKGROUND: The nasal cannula is considered a trusted and effective means of administering low-flow oxygen and is widely used for neonates and infants requiring oxygen therapy, despite an understanding that oxygen concentrations delivered to patients are variable. METHODS: In the present study, realistic nasal airway replicas derived from medical scans of children less than 3 months old were used to measure the fraction of oxygen inhaled (FiO2) through nasal cannulas during low-flow oxygen delivery. Parameters influencing variability in FiO2 were evaluated, as was the hypothesis that measured FiO2 values could be predicted using a simple, flow-weighted calculation that assumes ideal mixing of oxygen with entrained room air. Tidal breathing through neonatal and infant nasal airway replicas was controlled using a lung simulator. Parameters for nasal cannula oxygen flow rate, nasal airway geometry, tidal volume, respiratory rate, inhalation/exhalation, or I:E ratio (ti/te), breath waveform, and cannula prong insertion position were varied to determine their effect on measured FiO2. In total, FiO2 was measured for 384 different parameter combinations, with each combination repeated in triplicate. Analysis of variance (ANOVA) was used to assess the influence of parameters on measured FiO2. RESULTS: Measured FiO2 was not appreciably affected by the breath waveform shape, the replica geometry, or the cannula position but was significantly influenced by the tidal volume, the inhalation time, and the nasal cannula flow rate. CONCLUSIONS: The flow-weighted calculation overpredicted FiO2 for measured values above 60%, but an empirical correction to the calculation provided good agreement with measured FiO2 across the full range of experimental data.


Asunto(s)
Cánula , Oxígeno , Niño , Recién Nacido , Humanos , Lactante
17.
Sci Rep ; 12(1): 22280, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566292

RESUMEN

Ice hockey is a dynamic and competitive sport that requires a high level of neuromuscular and cardiovascular function. An objective assessment of skating helps coaches monitor athletes' performance during training sessions and matches. This study aimed to estimate the temporal and spatial parameters of skating by proposing an optimized configuration of wearable inertial measurement units (IMUs) and validating the system compared to in-lab reference systems. Ten participants were recruited to skate on a 14 m synthetic ice surface built in a motion-capture lab. Eight original event detection methods and three more adopted from gait analysis studies were implemented to detect blades-off and skate-strikes. These temporal events were detected with high accuracy and precision using skate-mounted IMUs. Also, four novel stride length estimation methods were developed to correct the estimated skaters' position using IMUs' readouts. The stride time, contact time, stride length, and stride velocity were obtained with relative errors of 3 ± 3%, 4 ± 3%, 2 ± 6%, and 2 ± 8%, respectively. This study showed that the wearable IMUs placed on skates and pelvis enables the estimation of temporal and spatial parameters of skating with high accuracy and precision, which could help coaches monitor skaters' performance in training.


Asunto(s)
Rendimiento Atlético , Hockey , Patinación , Dispositivos Electrónicos Vestibles , Humanos
18.
Appl Ergon ; 102: 103757, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35378482

RESUMEN

Work-related musculoskeletal disorders have been recognized as a global problem that affects millions of people annually. Fatigue is one of the main contributors to musculoskeletal disorders. Thus, this study investigated fatigue detection based on the measured body motion by wearable inertial measurement units. We quantified the body motion during manual handling tasks using a novel kinematic score (i.e., K-score), and the Rapid Entire Body Assessment (REBA). K-score and REBA were calculated using joint angles. Nevertheless, unlike REBA, K-score showed a significant correlation (Spearman's correlation coefficient of ρ(302) = 0.21, p < 0.05) with electromyography (EMG) signal amplitude, which was affected by muscle fatigue. Therefore, in-field measurement of K-score using inertial measurement units could detect the fatigue-induced change of body motion in long-duration manual handling tasks. Our proposed K-score can be used to assess fatigue-related ergonomic risk in long-term and real-world working conditions without the need for tedious EMG recording at workplaces.


Asunto(s)
Enfermedades Musculoesqueléticas , Dispositivos Electrónicos Vestibles , Fenómenos Biomecánicos , Electromiografía , Ergonomía , Humanos , Enfermedades Musculoesqueléticas/diagnóstico , Enfermedades Musculoesqueléticas/etiología
19.
J Neural Eng ; 19(2)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35378525

RESUMEN

Objective. Determining the roles of underlying mechanisms involved in stabilizing the human trunk during sitting is a fundamental challenge in human motor control. However, distinguishing their roles requires understanding their complex interrelations and describing them with physiologically meaningful neuromechanical parameters. The literature has shown that such mechanistic understanding contributes to diagnosing and improving impaired balance as well as developing assistive technologies for restoring trunk stability. This study aimed to provide a comprehensive characterization of the underlying neuromuscular stabilization mechanisms involved in human sitting.Approach. This study characterized passive and active stabilization mechanisms involved in seated stability by identifying a nonlinear neuromechanical physiologically-meaningful model in ten able-bodied individuals during perturbed sitting via an adaptive unscented Kalman filter to account for the nonlinear time-varying process and measurement noises.Main results. We observed that the passive mechanism provided instant resistance against gravitational disturbances, whereas the active mechanism provided delayed complementary phasic response against external disturbances by activating appropriate trunk muscles while showing non-isometric behavior. The model predicted the trunk sway behavior during perturbed sitting with high accuracy and correlation (average: 0.0007 (rad2) and 86.77%). This allows a better mechanistic understanding of the roles of passive and active stabilization mechanisms involved in sitting.Significance. Our characterization approach accounts for the inherently nonlinear behavior of the neuromuscular mechanisms and physiological uncertainties, while allowing for real-time tracking and correction of parameters' variations due to external disturbances and muscle fatigue. The outcome of our research, for the first time, (a) allows a better mechanistic understanding of the roles of passive and active stabilization mechanisms involved in sitting; (b) enables objective evaluation and targeted rehabilitative interventions for impaired balance; facilitate bio-inspired designs of assistive technologies, and (c) opens new horizons in mathematical identification of neuromechanical mechanisms employed in the stable control of human body postures and motions.


Asunto(s)
Postura , Sedestación , Fenómenos Biomecánicos , Humanos , Fatiga Muscular , Músculo Esquelético/fisiología , Equilibrio Postural , Postura/fisiología
20.
Sports Biomech ; : 1-18, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119345

RESUMEN

The countermovement vertical jump height, flight time, and jump duration are used to assess athletic performance. Force-plate and motion-capture cameras are used to estimate these parameters, yet, their application is limited to dedicated lab environments. Despite the potential of inertial measurement units (IMU) for estimating the jump height, their accuracy has not been validated. This study investigates the accuracy of our proposed method to estimate the jump height using a sacrum-mounted IMU, during countermovement jumping. Eleven individuals performed four jumps each. To obtain the jump height, we transformed the IMU readouts into anatomical planes, and double-integrated the vertical acceleration after correction for zero velocity and vertical displacement. The accuracy of jump height obtained by IMU was compared to force-plate and motion-capture cameras during jumps without arm swing (mean error (standard deviation) of 0.3(2.2) cm and 1.0(3.0) cm, and correlation coefficient of 0.83 and 0.82, respectively) and during jumps with arm swing (-1.1(2.1) cm and 0.5(1.9) cm, and 0.92 and 0.89). The correlation coefficients were high, and the errors were comparable to the difference between the jump height obtained by force-plate and cameras. Therefore, a sacrum-mounted IMU can be recommended for in-field assessment of countermovement jump with and without arm swing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...